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Scanning transmission electron microscopy (STEM) is known for its strength of offering high-resolution 
images [1] and tomographs of thick samples [2]. Beyond imaging, STEM enables the access to 
quantitative data, e.g. by electron energy loss spectroscopy [3]. Additionally, STEM also allows the 
mass determination of nano-scaled structures like organelles [4], or protein complexes [5]. Despite this 
technique was already introduced in 1962 by Zeitler and Bahr [6], only a few institutions worldwide 
established this method (for review see e.g. [7,8]). This might be owed to the excellent alternatives like 
quantitative mass spectrometry [9] or mass measurements utilizing nanochannel resonators [10]. 
Nevertheless, quantitative scanning transmission electron microscopy (q-STEM) offers still an 
advantage towards these techniques: the strong correlation between structure and quantitative data. 
For quantitative studies, like local thickness or mass measurements, commercial electron microscopes 
require modifications of the hardware as well as specific software packages for image processing and 
simulation of electron scattering.  
Here, we present progress in the development of this analytical tool in terms of hard- and software 
extension as well as samples preparation. In our case, an “in-lens” high-resolution scanning electron 
microscope (S-5000, Hitachi Ltd., Japan) was equipped with a sensitive annular dark-field (ADF) 
detector. Consisting of a plastic scintillator with a time constant of 2.2 ns, a light pipe with high 
transparency, a ultra fast photomultiplier and a high-speed discriminator and counter (Figure 1 a)) 
[11,12] the ADF detector enables single electron counting. In combination with the dedicated software 
packages for image processing [13] and the electron scattering simulation [14], our system is capable 
to measure thicknesses  up to  approximate 7-fold mean free electron path λ within the specimen (e.g., 
7λ at 30 keV carbon is approximate 180 nm) and molecular masses in the range of 100 kDa to a few 
GDa. Since the analysis requires a high level of purity of the specimen [15], we additionally 
investigated in a novel cryo high-vacuum transfer system for the contamination free transfer of freeze-
dried samples (Figure 1 b)). 
Therefore, our set-up seems to be well suited for the measurement of mass related parameters, such 
as mass of globular particles, mass per unit length, and mass per unit area of structures. With this 
progression we aim for interdisciplinary applications like simultaneous structure and mass thickness 
investigations of, for example, nanoparticles, hollow spheres, nanotubes, organic films and DNA-
protein complexes [16]. 
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Figure 1. a) Schematic overview of the extended microscope and its main components. b) Schematic overview of 

the freeze-drying device and the cryo high-vacuum shuttle as well as the main components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


