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    ABO3-type perovskite oxides have been identified as promising materials for application in oxygen 

separation membranes. Among these perovskites Ba0.5Sr0.5Co0.8Fe0.2O3-  (BSCF) has received 
particular attention due to its exceptional high oxygen permeation properties. However, a major 
obstacle for the application is the thermodynamic instability of the cubic BSCF phase at application-
relevant temperatures. The desired cubic phase decomposes at temperatures below 900 

o
C, resulting 

in a slow decrease of oxygen flux making it unsuitable for long-term operation. It is assumed that the 
decomposition is initiated by the decreasing concentration of oxygen vacancies with decreasing 
temperature which requires an increase of the valence of the B-site cations to preserve overall charge 
neutrality. This leads to a change of the ionic radius of the B-site cations and a corresponding 
destabilization of the cubic BSCF phase. Therefore, the cubic phase decomposes into various 
secondary phases, like the hexagonal BSCF phase, Co-oxide, precipitates with plate-like morphology, 
which are composed of thin lamellae of the cubic and hexagonal phases, and barium cobaltites 
Ban+1ConO3n+3(Co8O8) with n ≥ 2 (denoted BCO) [1-4]. 
    To improve the long-term stability of the cubic BSCF phase B-site doping with monovalent transition 
metals was investigated. Recent studies show improved phase stability for Zr-doped BSCF with a 
dopant concentration as low as 3 at% [5]. Furthermore, Y-doped BSCF has been reported to even 
improve considerably the oxygen conductivity [6]. However, a detailed phase investigation with high 
spatial resolution is still missing. Therefore, undoped and Y-doped BSCF was investigated by 
transmission electron microscopy and scanning electron microscopy (SEM). Electron energy loss 
spectroscopy (EELS) was applied to study the valence of the Co-cations. Energy dispersive X-ray 
spectroscopy (EDXS) was used for composition analysis.  
    Y-doped BSCF powder was prepared using the mixed-oxide route. Mixed raw powders were 
calcined and isostatically pressed into compacts. After sintering and homogenization, the bulk samples 
were annealed at temperatures from 700 

o
C to 900 

o
C for 100 h in ambient air. Prior to the SEM 

investigation the bulk samples were polished up to a surface roughness of about 0.1 µm, followed by 
an etching process using a colloidal silicon dioxide suspension. Due to the different etching rates of 
the different BSCF phases, a surface topography develops resulting in secondary electron contrast. 
This contrast can be directly related to the different BSCF phases [3], which allows a quick large-scale 
characterization of the phase composition of numerous samples. 
    Figure 1 shows SEM images of etched (a) undoped and (b) 3 at% Y-doped BSCF bulk samples 
after annealing at 700 

o
C. Undoped BSCF contains a large volume fraction of secondary phases, 

mainly precipitates with plate-like morphology surrounded by the hexagonal phase with dark contrast 
as shown in Fig. 1(a). Furthermore, CoO precipitates could be observed. In contrast, Y-doped BSCF 
only shows the hexagonal phase which can be found exclusively at grain boundary regions (dark 
contrast in Fig. 1(b)). After 800 

o
C annealing, the hexagonal phase is only formed at triple points of 

grain boundaries in Y-doped BSCF. At 900 
o
C, secondary phases were not detected in Y-doped BSCF 

whereas undoped BSCF contains BCO-type lamellae and CoO grains. Therefore, Y strongly reduces 
the concentration of nucleation centers for the hexagonal phase compared to undoped BSCF. 
However, Y does not fully suppress the formation of the hexagonal phase. Therefore, chemical 
analyses were performed to gain further insights into the decomposition process. EDXS mappings of a 
region containing the cubic BSCF phase and the hexagonal phase at a grain boundary (Figure 2) 
show a strong increase of Co and a depletion of Fe and Y whereas the Ba- and Sr-concentrations 
(mappings not shown here) only change marginally. The lack of Y in the hexagonal phase might be 
one reason for the improved phase stability because the formation of secondary phases requires a 
strong diffusion of B-site cations which might be suppressed by the large ionic radius of Y

3+
. 

    Since the change of the Co-valence plays a major role in the decomposition process, the Co-
valence state was investigated by EELS. Since the Ba-M4,5 white-lines are superimposed on the Co-
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L2,3 white-lines, Co-valence determination cannot be performed by the measurement of the Co-L2,3 
white-line intensity ratio. Therefore, a new method was developed to characterize the Co-valence state 
in BSCF by determining the change in Co-L2,3 white-line distance. This technique was elaborated on 
the basis of Co-L2,3 white-line distance measurements of reference materials with known Co-valence 
state. This method allows to easily map the Co-valence over a comparably large region as shown in 
Figure 3(a). The corresponding sample area of the mapping is marked with a white frame in the 
HAADF-STEM image Figure 3(b). Figure 3(a) confirms the supposed different Co-valence states in the 
hexagonal and cubic phase. In the cubic phase of Y-doped BSCF the valence of cobalt is about 2+, 
whereas in the hexagonal phase the valence state of cobalt is elevated (≥2.6+). 
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Figure 1. SEM micrographs of etched (a) undoped 

and (b) 3 at% Y-doped BSCF annealed at 700 
o
C for 

100 h. The dark contrast corresponds to the 
hexagonal phase. 

 

Figure 2. EDXS mappings of the Co-, Y- and Fe-

distribution in cubic BSCF and hexagonal BSCF at a 
grain boundary in 3 at% Y-doped BSCF annealed at 700 
o
C for 100 h. 

  

 
 

Figure 3. (a) EELS Co-valence mapping of a grain boundary region containing the hexagonal phase in 3 at% Y-

doped BSCF annealed at 730 
o
C for 100 h. (b) Overview HAADF-STEM image. The white frame corresponds to 

the sample area where the Co-valence mapping was performed. 

 

 

 

 

 

 

 

 


